حل عددی مسائل کنترل بهینه با قید معادله انتگرال

پایان نامه
چکیده

هدف اصلی در این رساله حل عددی دسته ای از مسائل کنترل بهینه تحت قیود معادلات انتگرالی است. ابتدا روشی مستقیم بر اساس بسط تیلور و پارامتری سازی برای محاسبه جواب تقریبی مسأله ارائه می شود . براساس این روش، الگوریتمی کارا و در عین حال ساده برای حل این رده از مسائل پیشنهاد می شود. سپس به روش حل مسائل کنترل بهینه با استفاده از چند جمله ای های لژاندر انتقال یافته با ضرایب مجهول به عنوان تقریبی از جواب در نظر گرفته می شود. شاخصه اصلی این تکنیک آن است که با استفاده ازماتریس های عملیاتی انتگرال و حاصلضرب قید معادله انتگرال را به دستگاهی با معادلات جبری تبدیل می کند. در ادامه با استفاده از گره های لژاندر-گاوس- لوباتو حل عددی دسته ای از مسائل کنترل بهینه با قید معادلات انتگرالی همرشتاین ارائه می شود. سرانجام با استفاده از توابع متعامد هایبرید لژاندر به روش عددی مسائل کنترل بهینه سیستم های با تأخیر زمانی می پردازیم. در پایان هر بخش دقت و کارایی روش با ارائه چند مثال ارائه می شود.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

رهیافتی نو برای حل عددی مسائل کنترل بهینه سیستم های پارامتر توزیعی

روش های کلاسیک برای حل مسائل کنترل غیر خطی و مخصوصاً مسائل کنترل بهینه سیستم های پارامتر توزیعی غیر خطی در حالت کلی معمولاً کارآمد نیستند. در این مقاله رهیافتی جدید برای حل تقریبی این دسته از مسائل با استفاده از برنامه ریزی غیر خطی معرفی می کنیم. در ابتدا، مسئله اصلی را به یک مسئله معادل درحساب تغییرات تبدیل می کنیم و سپس مسئله جدید را گسسته سازی کرده و با استفاده از برنامه ریزی غیر خطی آن را حل...

متن کامل

الگوریتمی ساده برای حل عددی معادله انتگرال ولترا با هسته منفرد ضعیف

روش های زیادی برای حل عددی معادلات انتگرال وجود دارد. در این مقاله یک روش عددی ساده با استفاده از تبدیل فازی، برای حل عددی معادله انتگرال با هسته منفرد ضعیف ارائه شده است. در پایان نیز با ارائه سه مثال موثر بودن روش پیشنهادی بررسی گردید. در تمامی محاسبات و نمودارها از نرم افزار متمتیکا استفاده شده است.

متن کامل

رهیافتی نو برای حل عددی مسائل کنترل بهینه سیستم های پارامتر توزیعی

روش های کلاسیک برای حل مسائل کنترل غیر خطی و مخصوصاً مسائل کنترل بهینه سیستم های پارامتر توزیعی غیر خطی در حالت کلی معمولاً کارآمد نیستند. در این مقاله رهیافتی جدید برای حل تقریبی این دسته از مسائل با استفاده از برنامه ریزی غیر خطی معرفی می کنیم. در ابتدا، مسئله اصلی را به یک مسئله معادل درحساب تغییرات تبدیل می کنیم و سپس مسئله جدید را گسسته سازی کرده و با استفاده از برنامه ریزی غیر خطی آن را حل ...

متن کامل

حل عددی مسائل کنترل بهینه با استفاده از توابع ترکیبی

در این رساله حل عددی مسائل کنترل بهینه بر اساس توابع هایبرید ارائه می شود. مسائل کنترل بهینه مطرح شده مسائلی با قیود معادله دیفرانسیل خطی ، معادله انتگرال دیفرانسیل خطی ولترا و همچنین معادله دیفرانسیل خطی با محدودیت نامساوی می باشند. ‎ ایده اصلی در این رساله‏‏، استفاده از توابع هایبرید با استفاده از توابع بلاک پالس کلی می باشد. بدین منظور، نخست به معرفی پایه های لژاندر و بلاک پالس کلی‎ و هایبر...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023